Overview
Cubic | Trafficware has been solving some of the traffic industry’s biggest problems since 1979. Accurate, economical, and flexible vehicle detection is one of the industry’s current challenges. In 30+ years of developing our own detection systems, as well as interfacing with all leading manufacturers, Cubic | Trafficware has collected a lot of data on how to approach and solve the detection problem.

How does a magnetometer or magnetic sensor work?
It senses the disturbances in the earth’s magnetic field due to the presence of a car or motorcycle. There are algorithms that interpret this disruption to characterize it into meaningful and reliable data.

Our answer is the Pod Detection System™, a wireless magnetic field sensor embedded in the road to accurately measure vehicle occupancy and detection. Powered by an industry-leading D-cell lithium battery, the Pod will transmit real-time data autonomously for up to 10 years, providing a solution to a broad range of transportation needs.

Pod Wireless Magnetometer
Sensors located in the roadway, wirelessly transmit vehicle data and receive administrative data.
- Compact and robust (2”H x 3.6”D)
- Industry-leading D-size lithium battery, providing up to 10 years of life with an average of 700 activations per hour, 24/7.
- 900 MHz wireless frequency:
 - Allows greater range, eliminating the need for a repeater. This simplifies the system by reducing the number of components, as well as easing installation and maintenance.
 - Better inroad performance, with the ability to communicate through snow, water, and ice that may have collected on the road surface over the sensor.
 - Smaller signal uses less battery to ensure longer system (or component) life.
• Auto-tune functionality, allowing the Pod to re-calibrate if the environment changes or roadway shifts or buckles.
• Three axis magnetometer with dual sensors in the Z-axis. Dual sensors in the most important axis provides redundancy and improved accuracy.
• Installation is quick, with minimal road closure duration:
 - Cut a hole that is 4.5” in diameter x 2.75” deep, using a diamond tipped drill bit.
 - Place a dab of epoxy in the bottom of the hole.
 - Install the Pod in the hole, with upper edge 3/8” from roadway surface.
 - Fill balance of hole with epoxy.
• Relocatable and battery replaceable.

Access Point and Antennas
Mounted on an intersection pole or mast-arm, the Access Point and Antennas provide two-way wireless communication between the Pod and Base-Station.

- Securely straps to the pole, within line-of-sight of the control cabinet. A wired connection is also available if there is occlusion or if the cabinet is on the same corner as the pole.
- There are four (4) radios – three (3) to broadcast to Pods and one (1) to broadcast to the Base Station.
- The omni-directional antenna covers all Pods located at the intersection. Long-range directional antennas are used for advance detection where Pods are located up to 700 feet away. These antennas are typically mounted on the mast-arm and are mounted back-to-back. Use of these long-range antennas eliminates the need for a repeater.

Base Station
Located in the control cabinet, the Base Station has the computing power of a full ATC controller, providing data processing and storage.

- SDLC connection for TS2 cabinets – allows direct connect and eliminates need for loop detector racks.
- Can emulate one to four BIU’s, or run in parallel with loops and other forms of detection.
- Detector card interfaces with NEMA, ITS or 33X cabinets.
- Either wired or wireless communication to the Access Point.
- Can support more than 150 Pods per intersection.
- Linux operating system.
- Ethernet Port and USB connection.
- Allows access to a browser-based graphical user interface (GUI), without software (licenses, annual fees, etc) required on individual computers.

POD Connect
POD Connect is a graphical user interface (GUI) that can be easily accessed from a web browser, simplifying the process of configuring, monitoring, and reporting the Pod System.

- May be conveniently accessed from tablets and smart phones.
How does the Pod compare to other forms of detection?

Pod vs. Loops

- Much simpler installation process.
- Wireless - no loop or lead in cable required.
- Small form factor allows the installation of Pod in minutes as opposed to hours for a loop.
- Much more durable and not subject to degradation in the roadway.
- Smart – can be grouped into larger detection zone or used as an individual point.
- Directional, capable of providing the direction of traffic flow.
- If there is a failure, it may be diagnosed through the web browser and the pods re-configured to work around the problem - without going into the field.
- More economical - requires less time to install and there is no need for expensive conduit and trenching to advance or system detectors.
- Eliminates damage to road surface caused by saw cuts.

Pod vs. Video

- Pod response time is quick, allowing it to be used for dilemma zone management applications.
- High accuracy for vehicle counts and measures of effectiveness.
- Not affected by:
 - Shadows
 - Reflections
 - Fog
 - Winter white-out conditions
 - Dirty or smudged lens
 - Salt build-up on lens (common in coastal towns)
 - Vibration on mast arm due to wind
 - Re-direction/aiming due to storms
- More economical.
- Can be used for accurate stop bar and advance detection.

Cubic | Trafficware's Pod Detection System™ uses patented technology exclusively licensed from Massachusetts Institute of Technology (M.I.T.) and has one or more features covered by one of the following patents: U.S. Patent Nos. 6,662,099, 8,855,902 and 9,020,742. Other patents pending. The foregoing notice is intended to serve as a notice under 35 U.S.C. § 287(a).